

NuMI Commissioning Workshop

- Workshop Goals
- Project Overview
- Commissioning Phases and Goals
- Roles & Responsibilities
- Commissioning steps
- Final Comments

Goals

- Develop a detailed plan to meet DOE Critical Decision 4 (Start of Operations)
- Develop a detailed plan to achieve normal beam operation at ~2.5E13 ppp (Fermilab start of operations)
- Recommendations on what should come before (e.g. systems checkout) and what should come after (e.g. > 2.5E13 ppp) are welcome

NuMI Project

Construct Facilities and Equipment for a Two Detector Neutrino Oscillation Experiment with Variable Energy Neutrino Beam

Obtain firm evidence for oscillations and measure oscillation parameters, Δm^2 , $\sin^2 2\theta$. Probe for $v_{\mu} \rightarrow v_{e}$ appearance.

Near Detector: 980 tons

NuMI Facility

Commissioning Phases

- Systems checkout
 - « Sam Childress & Craig Moore will give an overview of selected NuMI systems
 - « Peter Shanahan will present MINOS Near Detector readiness
- Main Injector studies to support NuMI operation
 - « Alberto Marchionni will give an overview
- Beam commissioning to meet CD-4 goals
 - « Low intensity beam, observation of neutrinos in the Near Detector
- Beam commissioning for near term physics data taking
 - « Beam operations transfer to Operations Group
- Path to higher intensity

CD-4 Goals

Goal	Parameter	Measurement	Commissioning Goal	WBS
1	Proton intensity in target hall	Toroid (or equivalent) beam intensity at entrance to the Target Hall	Greater than 1E12 120 GeV protons/spill	1.1
2	Beam alignment	Transverse distributions of the proton beam and secondary beams	Proton direction established to within 1 mr of the known direction to the Far Detector in the Soudan mine.	1.1
3	Neutrino beam energy	Near detector event energy	Low energy, 2-4 GeV	1.1, 2.0
4	Cosmic ray muons detected in the MINOS near detector	Near detector data read out through DAQ system	Majority of 153 near detector planes sensitive to muons	2.0
5	Near detector neutrino flux	Charged current event rate in 1.5 ton fiducial region	Observer neutrinos in the near detector produced by the NuMI beam	1.1, 2.0
6	Cosmic ray muons and atmospheric neutrinos detected in each of the two MINOS far detector super-modules	Far detector data read out through DAQ system	Majority of the 484 planes of the far detector sensitive to muons and atmospheric neutrinos	2.0

Project Roles & Responsibilities

- Technical Components L3 Managers are responsible for providing an operating system (design, procure, assembly, checkout, installation technical oversight, commissioning)
- ND Installation Manager = L3 Manager commissioning + MINOS collaboration
- Installation Coordinators are responsible for installation scheduling and work planning

Commissioning Roles & Responsibilities

- The NuMI Project is responsible for commissioning
- Ensure that commissioning activities are compliant with Fermilab and DOE requirements and goals
- Schedule these activities to maximize efficiency and minimize impact to accelerator operations
 - « NuMI Commissioning Coordinator Bruce Baller
 - « MINOS Near Detector Commissioning Coordinator Peter Shanahan

				Proton	Cycle				ND	Approx		
			Special	Intensity	Time	Profile	Tgt	Horn	neutrinos/	Dur		CD-4
Step	Description	Purpose	Req'mnts	(ppp)	(sec)	Mon	Pos	Status	hr/100T	(days)	Day	Goal
			NuMI enabled.									
		NuMI single batch setup.	Kicker off.									
	Main Injector	Ramp timing, Autotune	2 turns									
1	setup	validation	30 bunches	3.E+11	60	ln	Out	Off	0	0.5	0.5	
	First beam to	Beam tuning to observe	No below ground									
2	NuMI	beam profiles	access	3.E+11	60	ln	Out	Off	0	1	1.5	
		Check transport apertures &	No below ground									
3	Aperture Scan	transport matrix	access	3.E+11	60	ln	Out	Off	0	1	2.5	
		Check horn alignment with	No below ground									
4	Horn Alignment	beam scan & tgt pit LM	access	3.E+11	60	ln	Out	Off	0	0.5	7.5	
	Target/Baffle	Check target/baffle alignment	No below ground									
5	Alignment - LE	with beam scan & tgt pit LM	access	3.E+11	60	ln	LE	Off	0	0.5	8.5	
		Observe hadron monitor										
		beam profile. Check magnet	No below ground									
6	Raise intensity	ramp timing	access	1.E+12	60	In	Out	Off	0	1	3.5	1,2
		Calibrate loss monitors &										
	Calibration &	BPM's. Check horn timing	No below ground									
7	first neutrinos	with pit loss monitor?	access	1.E+12	60	In/Out	ME	On	8	1	4.5	3,5
			No below ground									
8	BPS tuning	Tighten BPS inputs	access	1.E+12	60	Out	ME	On	0	1	5.5	
			BPS trip on high									
		Check dose rates in	intensity/loss ->									
9	•	occupied areas	STD XPRT	1.E+12	60	Out	ME	On	8	0.5	6	
		Check BPM, profile monitor,										
	· ·	target, baffle, mu mon & had										
10	sensitivity	monitor sensitivity	BPS STD XPRT	1.E+12	60	ln	ME	Off	0	1	7	
	Target/Baffle	Check target/baffle alignment										
11		with beam scan & tgt pit LM	BPS STD XPRT	3.E+11	60	ln	ME	Off	0	0.5	8	
		Add tgt/baffle/horn inputs to										
		BPS. Define "baseline										
12		running conditions"	BPS STD	1.E+12	60	Out	LE	On	5	0.5	9	
		Establish Main Injector multi-										
		batch operation. Check NuMI										
13		transport & optics	BPS STD	5.E+12	60	Out	LE	On	26	5	14	
	,	Establish standard NuMI										
14	time	cycle time	RPS STD	5 F+12	2	Out	LE	On	783	5	10	

Final Comments

- We invite your comments on these dimensions to commissioning
 - « Technical issues
 - * Recommendations for checkout steps, potential interferences between NuMI, Run II, SY120
 - « Administrative requirements
 - * Approvals, documentation
 - « Safety
 - * The NuMI Safety Assessment Document & Shielding Assessment assume that systems are functioning correctly
 - « Human factors
 - * Qualifications of the commissioning team
 - * Intensity frenzied/sedate
- We hope to incorporate any lessons learned from your previous experience